منابع مشابه
An isoperimetric inequality on the lp balls
The normalised volume measure on the lp unit ball (1 ≤ p ≤ 2) satisfies the following isoperimetric inequality: the boundary measure of a set of measure a is at least cnã log(1/ã), where ã = min(a, 1− a). Résumé Nous prouvons une inégalité isopérimétrique pour la mesure uniforme Vp,n sur la boule unité de l n p (1 ≤ p ≤ 2). Si Vp,n(A) = a, alors V + p,n(A) ≥ cn ã log 1/ã, où V + p,n est la mesu...
متن کاملA NOTE ON AN LP-BRUNN-MINKOWSKI INEQUALITY FOR CONVEX MEASURES IN THE UNCONDITIONAL CASE By
We consider a different L-Minkowski combination of compact sets in R than the one introduced by Firey and we prove an L-BrunnMinkowski inequality, p ∈ [0, 1], for a general class of measures called convex measures that includes log-concave measures, under unconditional assumptions. As a consequence, we derive concavity properties of the function t 7→ μ(t 1 pA), p ∈ (0, 1], for unconditional con...
متن کاملA MAXIMAL Lp-INEQUALITY FOR STATIONARY SEQUENCES AND ITS APPLICATIONS
The paper aims to establish a new sharp Burkholder-type maximal inequality in Lp for a class of stationary sequences that includes martingale sequences, mixingales and other dependent structures. The case when the variables are bounded is also addressed, leading to an exponential inequality for a maximum of partial sums. As an application we present an invariance principle for partial sums of c...
متن کاملTHE Lp VERSION OF NEWMAN’S INEQUALITY FOR LACUNARY POLYNOMIALS
The principal result of this paper is the establishment of the essentially sharp Markov-type inequality ‖xP (x)‖Lp[0,1] ≤ 1/p+ 12 n ∑ j=0 (λj + 1/p) ‖P‖Lp[0,1] for every P ∈ span{xλ0 , xλ1 , . . . , xλn} with distinct real exponents λj greater than −1/p and for every p ∈ [1,∞]. A remarkable corollary of the above is the Nikolskii-type inequality ‖yP (y)‖L∞ [0,1] ≤ 13 n ∑ j=0 (λj + 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 1990
ISSN: 0893-9659
DOI: 10.1016/0893-9659(90)90146-3